Abstract

This paper presents computational modeling and results of steel storage tanks under heat induced by an adjacent fire. In this research, modeling is restricted to the structural behavior of the tank, with emphasis on thermal buckling of the shell. Two tanks that buckled under a huge fire in Bayamón, Puerto Rico in 2009, are investigated in detail: a small tank with a self-supported conical roof, and a large tank in which the conical roof is supported by a set of rafters and columns. For a tank that is empty, the results show that a relatively low temperature is enough to produce static buckling of the shell. In pre-buckling states, the cylindrical shell has thermal expansion; at the critical state the displacements reverse and inwards displacements are observed at advanced post-buckling states. Parametric studies are performed to understand the influence of the shell thickness, the level of fluid stored in the tank, the area affected by fire in the circumferential direction, and the temperature gradient through the thickness. The buckling modes are compared with real deflection of tanks that were affected by fire.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.