Abstract

The effect of localized axisymmetric initial imperfections on the critical load of elastic cylindrical shells subjected to axial compression is studied through analytical modeling. Some classical results regarding sensitivity of shell buckling strength with respect to distributed defects having axisymmetric or asymmetric forms are recalled. Special emphasis is placed after that on the more severe case of localized defects satisfying axial symmetry by displaying an analytical solution to the Von Kármán–Donnell shell equations under specific boundary conditions. The obtained results show that the critical load varies very much with the geometrical parameters of the localized defect. These variations are not monotonic in general. They indicate, however, a clear reduction of the shell critical load for some defects recognized as the most hazardous isolated ones. Reduction of the critical load is found to reach a level which is up to two times lower than that predicted by general distributed defects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call