Abstract
The present paper is devoted to the development of a kind of spectral meshless radial point interpolation (SMRPI) technique in order to obtain a reliable approximate solution for buckling of nano-actuators subject to different nonlinear forces. To end this aim, a general type of the governing equation for nano-actuators, containing integro-differential terms and nonlinear forces is considered. This general type for the nano-actuators is a non-linear fourth-order Fredholm integro-differential boundary value problem. The point interpolation method with the help of radial basis functions is used to construct shape functions which play as basis functions in the frame of SMRPI. In the current work, the thin plate splines (TPSs) are used as radial basis functions. This numerical based technique enables us to overcome all kind of nonlinearities in the mentioned boundary value problem and then to obtain fast convergent solution. Thus, it can facilitate the design of nano-actuators.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.