Abstract
A theoretical investigation of the buckling of cylindrical shells under uniform external lateral pressure loading is presented, based on Flügge's stability equations in coupled form; these lead to great accuracy. The numerical process gives the buckling pressure for a selected circumferential buckling mode, material, geometry and boundary conditions. The influence of 17 different homogeneous boundary conditions placed on the displacements u, v and w, and on the slope d w/d x is investigated. A wide range of geometries (0.5 ≤ L/ R ≤ 5 and 300 ≤ R/ h ≤ 3000) is considered. Comparisons are made with some analyses in the literature. It is also found that, contrary to the widespread understanding that the critical pressure for a free cylinder is the same as for a ring, the present model obtains a slightly lower buckling pressure which depends on the length.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.