Abstract
The structure of stretchable electronics is based on the buckling of a thin film on a compliant substrate. Under anisotropic biaxial prestrains, this structure may buckle into several patterns, including cylindrical, checkerboard, and undulating patterns. The displacement and energy of each pattern are deduced analytically. By comparing their minimum potential energies, the critical buckling condition of each pattern is determined. After secondary bifurcation, the checkerboard pattern occurs just above the critical prestrains, but the undulating pattern dominates other regions. The buckling amplitude and wavenumber of the undulating pattern are shown under biaxial prestrains. Even if the structure is under equi-biaxial prestrains, it may buckle into an asymmetric undulating pattern.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.