Abstract

Particles trapped at a fluid-fluid interface by capillary forces can form a monolayer that jams and buckles when subject to uniaxial compression. Here we investigate experimentally the buckling mechanics of monolayers of millimeter-sized rigid plates trapped at a planar fluid-fluid interface subject to uniaxial compression in a Langmuir trough. We quantified the buckling wavelength and the associated force on the trough barriers as a function of the degree of compression. To explain the observed buckling wavelength and forces in the two-dimensional (2D) monolayer, we consider a simplified system composed of a linear chain of platelike particles. The chain system enables us to build a theoretical model which is then compared to the 2D monolayer data. Both the experiments and analytical model show that the wavelength of buckling of a monolayer of platelike particles is of the order of the particle size, a different scaling from the one usually reported for monolayers of spheres. A simple model of buckling surface pressure is also proposed, and an analysis of the effect of the bending rigidity resulting from a small overlap between nanosheet particles is presented. These results can be applied to the modeling of the interfacial rheology and buckling dynamics of interfacial layers of 2D nanomaterials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call