Abstract

In most shell buckling codes, guidance on the design of conical shells is restricted to unstiffened cones and even in this case the clauses are based on the procedures for cylindrical shells. Virtually no guidance is offered on stiffened cones and the particular characteristics of conical shells are not treated in detail. In this paper, use is made of finite element analysis to quantify critical elastic response and imperfection sensitivity through numerical models, whose adequacy has been quantified through comparisons with test data. The finite element results obtained were aimed at validating existing design recommendations for unstiffened cones and at developing a design approach for stringer-stiffened cones under compression, with a philosophy and format compatible with the European Shell Buckling Recommendations (ECCS).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.