Abstract

The buckling characteristics and layup optimization of long laminated composite cylindrical shells subjected to combined loads of axial compression and torsion are examined on the basis of Flügge’s theory. In the buckling analysis of long laminated composite cylindrical shells, 12 lamination parameters are introduced and used as design variables for layup optimization. Applying a variational approach, the feasible region in the design space of the 12 lamination parameters is numerically obtained. The buckling characteristics are discussed in the design space of the 12 lamination parameters. In the layup optimization, the optimum lamination parameters for maximizing the buckling loads and the laminate configurations for realizing the optimum lamination parameters are determined by mathematical programming methods. It is found that in case of combined loads of axial compression and torsion, the optimum laminate configurations are unsymmetric.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.