Abstract
The buckling behaviour of the 360 × 152 steel H-piles supporting the integral abutments of the Scotch Road Bridge, located in Trenton, New Jersey, has been studied for the cases of single pile and pile bent. Three-dimensional finite-element models for single pile and pile bent have been developed to study the behaviour of these fully embedded piles under axial and lateral loading. An iterative analysis based on extracting the eigenvalues and eigenvectors (mode shapes) that correspond to the pile(s) critical buckling loads has been adopted. The pile(s) and the surrounding sand were modelled using solid continuum elements in the finite-element model. Material non-linearity is accounted for in both the piles and the soil in the base state of the model. A parametric study has been utilized to determine the effect of the geometric and material properties of the pile and the surrounding sand on the predicted critical buckling loads of the piles. The effects of four parameters have been studied: soil stiffness, pile length, type of connection, and combining vertical and lateral loads. The results from the parametric study showed that the variation of the percentage change in the sand stiffness, pile length, and combining vertical and lateral loads with the critical buckling loads of the 360 × 152 H-piles is nonlinear. Furthermore, the parameters studied are more influential in affecting the critical buckling load of a single pile than a pile bent, with the exception of the ‘type of connection’ parameter.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.