Abstract

This paper provides an insight into the buckling behavior of high strength concrete encased steel (CES) columns through a comprehensive investigation including experimental, numerical and analytical analyses. Three long CES column specimens made of high strength concrete C100 and S355 H-section were tested under axial compression. The maximum test loads obtained from these tests were compared with the buckling resistance predicted by EN 1994-1-1, AISC 360-10 and ACI 318-08. Nonlinear finite element analyses were performed to predict the buckling resistance and trace the load displacement behaviour of these columns. In the finite element model, the column initial imperfections were carefully chosen to predict the maximum resistance and the load-displacement response, and compared with the equivalent imperfection values stipulated in the modern design codes. In order to examine the validity and limitation of the current design approaches in predicting the buckling resistance of CES columns made of high strength concrete, a statistical study was undertaken based on the established database covering a wider range of material strength and geometric configurations. In the statistical study, the buckling resistance and effective flexural stiffness obtained from the tests were compared with the codes' predictions from EN 1994-1-1, AISC 360-10 and ACI 318-08. Finally, the reliability of the current design methods is assessed by correlating their accuracy with respect to the variation of material strength, column slenderness ratio, load eccentricity and steel contribution ratio.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.