Abstract

Abstract Over half of disk galaxies are barred, yet the mechanisms for bar formation and the lifetime of bar buckling remain poorly understood. In simulations, a thin bar undergoes a rapid (<1 Gyr) event called “buckling,” during which the inner part of the bar is asymmetrically bent out of the galaxy plane and eventually thickens, developing a peanut/X-shaped profile when viewed side-on. Through analyzing stellar kinematics of N-body model snapshots of a galaxy before, during, and after the buckling phase, we confirm a distinct quadrupolar pattern of out-of-plane stellar velocities in nearly face-on galaxies. This kinematic signature of buckling allows us to identify five candidates of currently buckling bars among 434 barred galaxies in the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) Survey, an integral field unit spectroscopic survey that measures the composition and kinematic structure of nearby galaxies. The frequency of buckling events detected is consistent with the 0.5–1 Gyr timescale predicted by simulations. The five candidates we present more than double the total number of candidate buckling bars and are the only ones found using the kinematic signature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.