Abstract
This paper evaluates the elastic stability and vibration characteristics of circular plates made from auxetic materials. By solving the general solutions for buckling and vibration of circular plates under various boundary conditions, the critical buckling load factors and fundamental frequencies of circular plates, within the scope of the first axisymmetric modes, were obtained for the entire range of Poisson's ratio for isotropic solids, i.e., from −1 to 0.5. Results for elastic stability reveal that as the Poisson's ratio of the plate becomes more negative, the critical bucking load gradually reduces. In the case of vibration, the decrease in Poisson's ratio not only decreases the fundamental frequency, but the decrease becomes very rapid as the Poisson's ratio approaches its lower limit. For both buckling and vibration, the plate's Poisson's ratio has no effect if the edge is fully clamped. The results obtained herein suggest that auxetic materials can be employed for attaining static and dynamic properties which are not common in plates made from conventional materials. Based on the exact results, empirical models were generated for design purposes so that both the critical buckling load factors and the frequency parameters can be conveniently obtained without calculating the Bessel functions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.