Abstract

This paper presents the results of an investigation on the buckling behavior of concentrically loaded thin–walled pultruded fiber reinforced polymer (PFRP) composite columns. Both open- and closed-web columns were evaluated. Finite element (FE) analysis and theoretical predictions are presented and correlated with experimental data. Good agreement between theoretical, analytical and experimental results was achieved. The paper also presents design guidelines to determine the bending stiffness and the critical buckling load for pultruded composite columns. In addition, a discussion on the axial strength of unidirectional PFRP columns and identification of different modes of failure are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.