Abstract

Shell structures are very interesting from the design point of view and these are well recognized in the scientific literature. In this paper the analysis of the buckling loads and stability paths of a sandwich conical shell with unsymmetrical faces under combined load based on the assumptions of moderately large deflections (geometrically nonlinear theory) is considered and elastic-plastic properties of the material of the faces are taken into considerations. External load is assumed to be two-parametrical one and it is assumed that the shell deforms into the plastic range before buckling. Constitutive relations in the analysis are those of the Nadai-Hencky deformation theory of plasticity and Prandtl-Reuss plastic flow theory with the H-M-H (Huber-Mises-Hencky) yield condition. The governing stability equations are obtained by strain energy approach and Ritz method is used to solve the equations with the help of analytical-numerical methods using computer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.