Abstract
An analytical investigation on the buckling and postbuckling behavior of carbon nanotube reinforced composite (CNTRC) sandwich cylindrical panels exposed to thermal environments and subjected to uniform axial compression is presented in this paper. Beside sandwich model with CNTRC face sheets in the literature, the present work suggests a sandwich model with CNTRC core layer and homogeneous face sheets. Carbon nanotubes (CNTs) are reinforced into matrix phase through uniform or functionally graded distributions. Effective properties of nanocomposite layers are determined according to extended rule of mixture. Formulations are based on the first order shear deformation theory taking into account Von Karman-Donnell nonlinearity. Approximate solutions are assumed to satisfy simply supported boundary conditions and Galerkin method is used to derive the closed-form expression of nonlinear load-deflection relation from which buckling loads and postbuckling paths are determined. Numerical examples are carried out and interesting remarks are given.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.