Abstract
An experimental study of the buckling and postbuckling behavior of square and rectangular compression loaded aluminum plates with centrally located circular, square, and elliptical cutouts is presented. Experimental results indicate that the plates exhibit overall trends of increasing buckling strain and decreasing initial postbuckling stiffness with increasing cutout width. Corresponding plates with circular and square cutouts of the same width buckle at approximately the same strain level, and exhibit approximately the same initial postbuckling stiffness. Results show that the reduction in initial postbuckling stiffness due to a cutout generally decreases as the plate aspect ratio increases. Other results presented indicate that square plates with elliptical cutouts having a large cutout-width-to-plate-width ratio generally lose prebuckling and initial postbuckling stiffness as the cutout height increases. However, the plates buckle at essentially the same strain level. Results also indicate that postbuckling stiffness is more sensitive to changes in elliptical cutout height than are prebuckling stiffness and buckling strain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.