Abstract

This paper deals with a numerical model for the buckling and post-buckling analysis of single-wall carbon nanotubes. Reasons of efficiency lead to the choice of a simple molecular statics model, wherein binary, ternary and quaternary atomic interactions are accounted for and described using Morse and cosine potential functions. The equations of the model are discussed in depth and the parameters of the potential functions are justified in the light of a comparison with ab-initio results. Several case studies regarding zigzag and armchair tubes of different aspect ratios, under compression, bending and torsion, are addressed with the aim of investigating the efficacy of the model and the role of the quaternary interactions, in contexts of both global and local behaviours.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call