Abstract
Using an atomic force microscope operated inside a transmission electron microscope, we have studied the forces involved in buckling and kinking an individual multiwalled carbon nanotube while observing its structure. In particular, we have measured an individual nanotube's asymptotic critical buckling load and critical kinking load. The buckling results are well described by classical elastic theory, while the observed kinking behavior requires a more involved analysis. Repeated buckling measurements on the same nanotube indicate an extremely high degree of elasticity and set a lower bound on the nanotube's yield strength of $1.7\phantom{\rule{0.3em}{0ex}}\mathrm{GPa}$, higher than the yield strength of steel. Plastic deformation of the nanotube was eventually observed following kinking.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.