Abstract

The rheology of confined flowing suspensions, such as blood, depends upon the dynamics of the components, which can be particularly rich when they are elastic capsules. Using boundary integral methods, we simulate a two-dimensional model channel through which flows a dense suspension of fluid-filled capsules. A parameter of principal interest is the equilibrium membrane perimeter, parameterized by ξ o, which ranges from round capsules with ξ o=1.0 to ξ o=3.0 capsules with a dog-bone-like equilibrium shape. It is shown that the minimum effective viscosity occurs for ξ o≈1.6, which forms a biconcave equilibrium shape, similar to a red blood cell. The rheological behavior changes significantly over this range; transitions are linked to specific changes in the capsule dynamics. Most noteworthy is an abrupt change in behavior for ξ o≈2.0, which correlates with the onset of capsule buckling. The buckled capsules have a more varied orientation and make significant rotational (rotlet) contributions to the capsule–capsule interactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.