Abstract

The experimental and numerical investigations are carried out for buckling and vibration of 3D printed functionalized MWCNTs/HDPE based nanocomposite (NC) and their functionally graded nanocomposite (FGNC) variants. Pcr(critical buckling load) is computed through MBC (modified budiansky criteria) and DTM (double tangent method) techniques. It is observed that Pcr of the 3D printed NCs and FGNCs increases with the functionalized MWCNTs content. The Pcr values for the NCs (H0.5-H5) computed using DTM and MBC increased in the range of 16–79%, while for FGNC-1 (H0.5-H1-H3) and FGNC-2 (H1-H3-H5), the Pcr increased from 54 to 91% compared to HDPE. Further, it is observed that the natural frequency of the NCs and FGNCs increases with the functionalized MWCNTs loading while decreases with rise in compression. The natural frequency of the NCs (H0.5-H5) and FGNCs increased up to 41% than HDPE. The highest Pcr and the natural frequency is noted for H5 and FGNC-2 prints. The experimental and numerical results showed good agreement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call