Abstract

Both total potential energy and buckling equation of two-span continuous beam with lateral elastic brace under uniform load are deduced, based on energy variation method and the principle of minimum potential energy. Buckling of H-beams is simulated by ANSYS software, then compared to theoretical value, validated its rationality. High precision buckling moment formula is regressed using 1stOpt which is a famous mathematical optimization analysis software in China. The relationship between lateral brace stiffness and buckling moment is obtained. Results: with lateral brace stiffness increases, critical bending moment of beam increases within up-limit, e.g. when lateral brace stiffness increases to certain extent, buckling moment no longer increases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.