Abstract

Abstract Stitching has been used as through-thickness reinforcement to reduce the effects of delamination. In stitching, the delamination will be held by stitches in the form of crack/interface bridging. In the present work, the reinforcement of stitching threads is assumed to provide continuous linear restoring tractions opposing the delamination opening. A generalized mathematical model is developed to study the buckling analysis of two layer delaminated beams with bridging by using Rayleigh–Ritz energy method. The delaminated beam is analyzed as four interconnected beams using the delamination as their boundary. Lagrange multipliers are used to enforce the boundary and continuity conditions between the junctions of the interconnected beams. The developed mathematical model is solved as an eigenvalue problem in which the lowest eigenvalue gives the buckling load. Effective-bridging modulus, a new nondimensionalized parameter, is introduced to study the influence of bridging on the delamination buckling. It is shown that bridging strongly influences the buckling load of the delaminated beams and a monotonic relation is observed between the buckling load and the effective-bridging modulus. Parametric studies in terms of delamination sizes and locations along spanwise and thicknesswise positions on the buckling load have been carried out. The bridging is found to be effective for shallow delaminations of moderate length, and for deep and long delaminations. Spanwise positions of delamination strongly influence the buckling loads. In addition, an analytical model for obtaining upper bounds of the buckling load is developed by using Euler–Bernoulli beam theory. Effective-slenderness ratio, a new nondimensionalized parameter is defined and it is found to be controlling the buckling mode configurations, i.e., local, global and mixed modes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.