Abstract

The energy approach is used to analyze the buckling stability of toroidal shells. A closed and an open toroidal shell, as well as a shell segment are considered. Linear strain energy and nonlinear strain energy due to a uniform external pressure are formulated. Variations of the in-surface and normal displacement components in the circumferential and meridional directions are assumed in the form of a double Fourier series. The eigenvalue problem for the determination of the critical pressure is formulated by the Rayleigh–Ritz method (RRM). The proposed procedure is evaluated by numerical examples: one for a closed and another one for a simply supported open toroidal shell. The obtained results are validated by a comparison with results obtained by the finite strip method (FSM) and the finite element method (FEM), which shows a very good agreement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.