Abstract

The failure of elastic perfect cylinders under uniform external pressure is caused by circumferential buckling. The effects of the cylinder length, of the restraining conditions at boundaries and of the length of the pressurized zone all have great influences on the critical buckling load. In the European Standard for Shells EN 1993-1-6 (2007), the critical circumferential buckling stress is obtained by introducing an external buckling factor which takes the influence of different boundary conditions into account. However, the restraint of the meridional rotation at boundaries was not considered separately for the factor. For short cylinders, any restraint of the boundaries affects the buckling mode and buckling strength greatly. In this paper, the effect of meridional end rotations on the buckling strength of short cylinders was studied. The pre-buckling membrane stress state given by membrane theory was assumed for all the analyses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.