Abstract

Static stability analysis of a size-dependent magneto-electro-elastic functionally graded nanoplate has an immense contribution in identification and improvement of the performance of nano-electro-mechanical systems. A refined trigonometric plate theory is employed to formulate the magneto-electro-elastic functionally graded nanoplate for the first time. Magneto-electro-elastic properties of nanoplate change in spatial coordinate based on power-law form. Regarding the small-scale effects at nanoscales, the size-dependent nonlocal continuum theory is employed to derive governing equations of the nonclassical magneto-electro-elastic functionally graded nanoplate. Analytical solution possessing functions which satisfy different boundary conditions is adopted to solve the equations. The results illustrate the size-dependent buckling behavior of magneto-electro-elastic functionally graded nanoplate affected by magnetic potential, electric voltage, various boundary conditions, small-scale parameter, material composition, plate side-to-thickness ratio, and aspect ratio.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.