Abstract

This study investigates buckling behaviors of laminated composite structures with a delamination using the enhanced assumed strain (EAS) solid element. The EAS three-dimensional finite element (FE) formulation described in this paper, in comparison with the conventional approaches, is more attractive not only because it shows better accuracy but also it converges faster, especially for distorted element shapes. The developed FE model is used for studying cross-ply or angle-ply laminates containing an embedded delamination as well as through-the-width delamination. The numerical results obtained are in good agreement with those reported by other investigators. In particular, new results reported in this paper are focused on the significant effects of the local buckling for various parameters, such as size of delamination, aspect ratio, width-to-thickness ratio, stacking sequences, and location of delamination and multiple delaminations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.