Abstract

Buckling of axially loaded cantilever nanobeams with intermediate support have been studied in the current study. Higher order size dependent strain gradient theory has been utilized to capture the scale effect in nano dimension. Minimum total potential energy formulation has been used in modeling of nanobeam. Approximate Ritz method has been applied to the energy formulation for obtaining critical buckling loads. Position of the intermediate support has been varied and its effect on the critical buckling load has been investigated in the analysis. Mode shapes in critical buckling loads have been shown for various intermediate support positions. Present results could be useful in design of carbon nanotube resonators.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.