Abstract
Using the non-local elasticity theory, Timoshenko beam model is developed to study the elastic buckling of double-walled carbon nanotubes (DWCNTs) embedded in an elastic medium under axial compression. The non-local effects in the normal and transverse shear stress components are considered. The effects of the surrounding elastic medium based on a Winkler model and van der Waals' (vdW) force between the inner and outer nanotubes are taken into account. Considering the small-scale effects, the governing equilibrium equations are derived and the critical buckling loads under axial compression are obtained. The numerical results are reported using the non-local Timoshenko beam theory and compared with those obtained using the non-local Euler—Bernoulli beam theory. The results show that the critical buckling load can be overestimated by the local beam model if the small-scale effect is overlooked for long nanotubes. Furthermore, in order to estimate the non-local critical buckling load of DWCNTs under axial compression, a simplified analysis is carried out and the results are compared with those obtained using molecular mechanics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.