Abstract
This study proposes a solution for the analysis of critical buckling load of a coupled double-layer graphene sheets (DLGSs) system resting on elastic medium. In the upper and lower parts of the system, two graphene layers, which are under van der Waals force and related to each other through an elastic medium on the basis of Pasternak and Winkler models, are utilized. The performed model is considered to be based on Eringen’s nonlocal elasticity theory and sinusoidal nonlocal shear deformation theory. In addition, the properties of orthotropic plate are applied in the model. Constitutive relations and equations together with boundary conditions are derived on the basis of Hamilton’s principle. Furthermore, the effect of surface stress according to Gurtin–Murdoch theory is considered. Moreover, critical buckling load for in-phase, out-of-phase, and one side fixed states subjected to in-plane forces is obtained. The results of the study reveal the minimum value of critical buckling load for in-phase state and the maximum value of that for out-of-phase state, and that the value of one side fixed state critical buckling load exists between these two states.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Brazilian Society of Mechanical Sciences and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.