Abstract

The main purpose of this study is to give a numerical solution for static buckling problem of circular cylindrical panels, conical panels, conical shells and circular cylindrical shells under axial load. Isotropic, laminated composite, functionally graded material (FGM) and carbon nanotube (CNT) reinforced functionally graded cases are taken into consideration. By using the Donnell’s shell theory and first-order shear deformation (FSDT) shell theory, the related equations have been obtained for buckling phenomena of shells. Then, the method of discrete singular convolution (DSC) based on the Shannon’s kernel is applied for the solution of these equations. Convergence and comparison studies are carried out to check the validity and accuracy of the DSC method. The effects of shell geometric quantities and material properties on buckling are examined and results are presented for isotropic, FGM, CNT reinforced FGM and laminated composite conical and cylindrical shells and panels. Performance and convergence conditions of the method of DSC have also been investigated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.