Abstract

A mixed atomistic and continuum model is applied to carbon nanotubes, in order to study their buckling behavior. Herein, the term "atomistic" refers to the underlying constitutive model that is formulated on the basis of interatomic potentials, whereas "continuum" means the application of the Cauchy---Born rule, which links the bond vectors before and after deformation via the deformation gradient of the continuum. Because the bond vectors are not infinitesimal and the continuum is modeled as surface, the Cauchy---Born rule has to be appropriately adapted to crystalline sheets. This is done via an exponential mapping in a new and surprisingly simple form such that in the analysis the current configuration has never to be left. The numerical buckling analysis of carbon nanotubes using the mixed atomistic and continuum model is carried out by means of the finite element method. For this purpose, the linearization of the equilibrium equations is provided.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.