Abstract

Advanced Grid Stiffened(AGS) composite cylindrical shells are widely used in aerospace industry. This study analyzes the buckling loads for various types of grid structures of AGS composite cylindrical shells. The grid structures are classified as Angle-grid, Iso-grid, Kagome-grid, Ortho-grid, Orthotropic-grid and the characteristics had been analyzed for each grid type. In this study, the various types of grid structure were designed that weight of the whole structure keeps a constant. Under the condition of constant-weight, design variables such as grid angle, number of the grid, h/t ratio of the grid were controlled, and buckling loads of the grid structures were analyzed. The results were analyzed for each type of grid and each design variable of the structures. This study was performed through finite element method and the accuracy of the analysis was verified by previous studies. Finally, buckling modes were analyzed with the thickness of the skin. The selection for the most appropriate design variables had been verified for each grid type and the result can be applied to the optimization of grid structure design, and is also very helpful for reducing the computational cost and obtaining optimization values more accurately.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call