Abstract

This study presents the buckling analysis of a solid circular plate made of porous material bounded with piezoelectric sensor–actuator patches. The porous material properties vary through the thickness direction of the plate following a given function. The general mechanical nonlinear equilibrium and linear stability equations are derived using the variational formulations to obtain the governing equations of the piezoelectric porous plate. The buckling load is derived for solid circular plates under uniform radial compressive loading for the clamped edge condition. The effects of piezoelectric layers on the buckling load of the plate, piezoelectric layer-to-porous plate thickness ratio, feedback gain, and variation of porosity are investigated. The results are verified with the known results in the literature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call