Abstract

A new version differential quadrature method (DQM) has been proposed to obtain buckling loads of thin anisotropic rectangular and isotropic skew plates. The essential difference from the old version DQM is the introduction of two degrees of freedom for boundary points and from the existing differential quadrature element method (DQEM) is the determination of the weighting coefficients. The methodology is worked out in detail and a variety of buckling problems shown slow convergence earlier by Rayleigh-Ritz method with beam functions, including isotropic skew plates with various skew angles and anisotropic rectangular plates with simply supported or clamped boundary conditions, are solved by the proposed DQM. Numerical results indicate that fast convergence is achieved and excellent results are obtained by the proposed DQM.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call