Abstract

Cracks in the welded joints on the bucket wheel (BW) body of the bucket wheel excavator (BWE) SRs 1300 were discovered after merely 1800 h of operation. Investigations are carried out in order to detect the causes of cracks occurrence and thus prevent possible heavy damages to the machine. Working stresses in the BW body are defined by using FEM. Methods of strain gauges are used for the experimental stress analysis in real working conditions. Measurements of welding residual stresses are carried out by applying the centre hole drilling method. Additionally, experimental investigations defined the chemical composition, tensile properties, hardness, impact toughness, as well as the susceptibility to cracking (measurement of residual hydrogen, FISCO, Tekken and CTS methods). External loads induced by the resistance-to-excavation are determined by following a model that encompasses all relevant structural parameters and also the BWE duty cycle parameters. By using FEM, it was identified that the maximum values of equivalent stress in the zones of cracks occurrence are lower than the allowable values. This conclusion is confirmed by measurements. The measured values of welding residual stresses reach the value of yield strength in critical zones. Non-compliances during grooving (clearance in the root is substantially larger than the prescribed one) caused large filler material deposition and heat input. Such welded joints are susceptible to cold cracking. Based on the results of the numerical–experimental analysis, findings show that in critical zones the combination of working (dynamic) and residual (static) stress can be above the limit lines of modified Goodman’s diagrams i.e. that the fatigue safety of the BW body structure was insufficient.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call