Abstract

This article proposes new common ground bridgeless power factor correction rectifiers suitable for use in any application which requires a positive or negative dc power supply. The main advantage of the proposed rectifiers, compared to previous works, is the provision of the common ground between input and output, which eliminates electromagnetic interference (EMI) associated with high rates of change of voltage and consequently reduces the need for EMI common mode filtering. The converter also provides step-down and step-up operation, and facilitates positive or negative output voltages with a low number of semiconductor devices operating simultaneously. High power factor, acceptable grid-side current quality, and high efficiency are also achieved. Two variants are presented, referred to as type-I and type-II, which offer common ground positive and negative dc voltages, respectively. Closed-loop control of the converters is provided by a dead-beat current controller in the inner loop. Experimental results are presented for a 500-W prototype, operating from 220 and 110 Vrms input to <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$\pm$</tex-math></inline-formula> 48 and <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$\pm$</tex-math></inline-formula> 200 Vdc output. The experimental results demonstrate the capability for step-down and step-up ac-to-dc power conversion with a peak efficiency of 96.8% and 96.6% in the positive and the negative outputs, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.