Abstract

AbstractLet (A,m) be a Noetherian local ring with d = dim A ≥ 2. Then, if A is a Buchsbaum ring, the first Hilbert coefficients of A for parameter ideals Q are constant and equal to where hi(A) denotes the length of the ith local cohomology module of A with respect to the maximal ideal m. This paper studies the question of whether the converse of the assertion holds true, and proves that A is a Buchsbaum ring if A is unmixed and the values are constant, which are independent of the choice of parameter ideals Q in A. Hence, a conjecture raised by [GhGHOPV] is settled affirmatively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.