Abstract

Analgesia and sedation have been achieved noninvasively by fentanyl administration through the oral and nasal mucosa. In theory, the transmucosal bioavailability and absorption of fentanyl could be improved by converting more fentanyl to the unionized form by adjusting the surrounding pH. The authors tested this hypothesis in dogs. Under general anesthesia, each of six mongrel dogs was given fentanyl on repeated occasions, first intravenously (once), then by application to the buccal mucosa (six times). Buccal fentanyl administration was accomplished by placement of a pH-buffered solution of fentanyl into a specially constructed cell, which was clamped to the dog's buccal mucosa for 60 min. Fentanyl solutions with pHs of 6.6, 7.2, and 7.7 were studied to span a tenfold difference in the unionized fraction of fentanyl. Femoral arterial blood samples were sampled frequently and analyzed for fentanyl using a radioimmunoassay. Peak plasma concentration and the time of its occurrence for each buccal study were noted from the plasma concentration verses time profile. Terminal elimination half-life, bioavailability, and permeability coefficients were calculated using standard pharmacokinetic techniques. The variables peak plasma concentration, bioavailability, and permeability coefficient increased three- to fivefold as the pH of the fentanyl buccal solution increased and more fentanyl molecules became unionized. There was no difference in terminal elimination half-life after intravenous fentanyl (244 +/- 68 min) or buccal fentanyl administration (pH 7.7, 205 +/- 89 min; pH 7.2, 205 +/- 65 min; pH 6.6, 196 +/- 48 min). In all buccal studies regardless of pH, time to peak plasma concentration occurred within 10 min of removal of the fentanyl solutions from the buccal mucosa. The buccal absorption, bioavailability, and permeability of fentanyl are markedly increased as the pH of the fentanyl solution becomes more basic. Most likely, this is because of an increase in the fraction of unionized fentanyl.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call