Abstract

Partial cavitation in the separated region forming from the apex of a wedge is examined to reveal the flow mechanism responsible for the transition from stable sheet cavity to periodically shedding cloud cavitation. High-speed visualization and time-resolved X-ray densitometry measurements are used to examine the cavity dynamics, including the time-resolved void-fraction fields within the cavity. The experimentally observed time-averaged void-fraction profiles are compared to an analytical model employing free-streamline theory. From the instantaneous void-fraction flow fields, two distinct shedding mechanisms are identified. The classically described re-entrant flow in the cavity closure is confirmed as a mechanism for vapour entrainment and detachment that leads to intermittent shedding of smaller-scale cavities. But, with a sufficient reduction in cavitation number, large-scale periodic cloud shedding is associated with the formation and propagation of a bubbly shock within the high void-fraction bubbly mixture in the separated cavity flow. When the shock front impinges on flow at the wedge apex, a large cloud is pinched off. For periodic shedding, the speed of the front in the laboratory frame is of the order of half the free-stream speed. The features of the observed condensation shocks are related to the average and dynamic pressure and void fraction using classical one-dimensional jump conditions. The sound speed of the bubbly mixture is estimated to determine the Mach number of the cavity flow. The transition from intermittent to transitional to strongly periodic shedding occurs when the average Mach number of the cavity flow exceeds that required for the generation of strong shocks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call