Abstract
We construct smooth BPS three-charge geometries that resolve the zero-entropy singularity of the U(1) x U(1) invariant black ring. This singularity is resolved by a geometric transition that results in geometries without any branes sources or singularities but with non-trivial topology. These geometries are both ground states of the black ring, and non-trivial microstates of the D1-D5-P system. We also find the form of the geometries that result from the geometric transition of N zero-entropy black rings, and argue that, in general, such geometries give a very large number of smooth bound-state three-charge solutions, parameterized by 6N functions. The generic microstate solution is specified by a four-dimensional hyper-Kahler geometry of a certain signature, and contains a ``foam'' of non-trivial two-spheres. We conjecture that these geometries will account for a significant part of the entropy of the D1-D5-P black hole, and that Mathur's conjecture might reduce to counting certain hyper-Kahler manifolds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.