Abstract
For a sequence of approximate harmonic maps (u_n,v_n) (meaning that they satisfy the harmonic system up to controlled error terms) from a compact Riemann surface with smooth boundary to a standard static Lorentzian manifold with bounded energy, we prove that identities for the Lorentzian energy hold during the blow-up process. In particular, in the special case where the Lorentzian target metric is of the form g_N -beta dt^2 for some Riemannian metric g_N and some positive function beta on N, we prove that such identities also hold for the positive energy (obtained by changing the sign of the negative part of the Lorentzian energy) and there is no neck between the limit map and the bubbles. As an application, we complete the blow-up picture of singularities for a harmonic map flow into a standard static Lorentzian manifold. We prove that the energy identities of the flow hold at both finite and infinite singular times. Moreover, the no neck property of the flow at infinite singular time is true.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Calculus of Variations and Partial Differential Equations
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.