Abstract

The dynamics of a bubble, initially stationary and spherical, rising in a viscous Newtonian liquid have been studied numerically using 3-D Volume-of-Fluid (VOF) method implemented in the Gerris flow solver. The study encompasses 8.7≤Eo (=ΔρgD2/σ)≤641 and Re≤151. Additionally, results published in the literature encompassing bubbles with lower values of Eo numbers were also considered, such that the overall dependencies of bubble shape, wake characteristics, and drag coefficient over a large range of Eo and Re values can be identified. While it was found that the deformation of the bubbles as predicted through the numerical study can generally replicate experimental observations presented, several limitations were identified, such as in the representation of skirt formation behind a skirted bubble and the formation of satellite bubbles behind a bubble rising at high Reynolds numbers. The dependency of the bubble aspect ratio on the Weber and Morton numbers was confirmed for cases of spherical and ellipsoidal bubbles; whilst for spherical cap and skirted bubbles the aspect ratio was found to depend largely on the Reynolds and Capillary numbers, respectively. Finally, the expansion and formation of closed/open laminar wakes behind the rising bubble were analysed and was found to correlate well with the bubble Re and Eo numbers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.