Abstract

We study averaging methods for the derivation of mixture equations for disperse vapor bubbles in liquids. The carrier liquid is modeled as a continuum, whereas simplified assumptions are made for the disperse bubble phase. An approach due to Petrov and Voinov is extended to derive mixture equations for the case that there is a phase transition between the carrier liquid and the vapor bubbles in water. We end up with a system of balance laws for a multi-phase mixture, which is completely in divergence form. Additional non-differential source terms describe the exchange of mass, momentum and energy between the phases. The sources depend explicitly on evolution laws for the total mass, the radius and the temperature of single bubbles. These evolution laws are derived in a prior article (Dreyer et al. in Cont Mech Thermodyn. doi:10.1007/s00161-0225-6, 2011) and are used to close the system. Finally, numerical examples are presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.