Abstract
For a second-order nonlinear ordinary differential equation (ODE), a singular Boundary value problem (BVP) is investigated which arises in hydromechanics and nonlinear field theory when static centrally symmetric bubble-type (droplet-type) solutions are sought. The equation, defined on a semi-infinite interval 0 < r < ∞ , possesses a regular singular point as r 0 and an irregular one as r ∞ . We give the restrictions to the parameters for a correct mathematical statement of the limit boundary conditions in singular points and their accurate transfer into the neighborhoods of these points using certain results for singular Cauchy problems and stable initial manifolds. The necessary and suf- ficient conditions for the existence of bubble-type (droplet-type) solutions are discussed (in the form of additional restrictions to the parameters) and some estimates are obtained. A priori detailed analysis of a singular nonlinear BVP leads to efficient shooting methods for solving it approximately. Some results of the numerical experiments are displayed and their physical interpretation is discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Computational Mathematics and Mathematical Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.