Abstract
Recently, different models of the statistical structure of natural images have been proposed. These models predict properties of biological visual systems and can be used as priors in Bayesian inference. The fundamental model is independent component analysis, which can be estimated by maximization of the sparsenesses of linear filter outputs. This leads to the emergence of principal simple cell properties. Alternatively, simple cell properties are obtained by maximizing the temporal coherence in natural image sequences. Taking account of the basic dependencies of linear filter outputs permit modeling of complex cells and topographic organization as well. We propose a unifying framework for these statistical properties, based on the concept of spatiotemporal activity "bubbles."A bubble means here an activation of simple cells (linear filters) that is contiguous both in space (the cortical surface) and in time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Optical Society of America. A, Optics, image science, and vision
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.