Abstract

Photocatalytic water splitting (PWS) as the holy grail reaction for solar-to-chemical energy conversion is challenged by sluggish oxygen evolution reaction (OER) at water/catalyst interface. Experimental evidence interestingly shows that temperature can significantly accelerate OER, but the atomic-level mechanism remains elusive in both experiment and theory. In contrast to the traditional Arrhenius-type temperature dependence, we quantitatively prove for the first time that the temperature-induced interface microenvironment variation, particularly the formation of bubble-water/TiO2(110) triphase interface, has a drastic influence on optimizing the OER kinetics. We demonstrate that liquid-vapor coexistence state creates a disordered and loose hydrogen-bond network while preserving the proton transfer channel, which greatly facilitates the formation of semi-hydrophobic •OH radical and O-O coupling, thereby accelerating OER. Furthermore, we propose that adding a hydrophobic substance onto TiO2(110) can manipulate the local microenvironment to enhance OER without additional thermal energy input. This result could open new possibilities for PWS catalyst design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.