Abstract

AbstractThis paper describes and expounds a theoretical and experimental study of bubble motion through constricted capillary tubes. In the experiment, two liquidfilled capillaries are used. They have unequal radii and are glued together. Gas bubbles are injected into the larger capillary. Then the pressure required to force the bubbles through the constriction is measured for various liquids, bubble lengths, capillary radii and constriction geometry. It appears that the pressure directly follows Young's‐Laplace law for capillary pressure. The results of the study are used to understand the bubble transport through fiber reinforcements, which generally takes place during the manufacturing of composites. The bubbles are carried if: (i) the pressure gradient is high enough, (ii) the surface tension of the liquid is low enough, (iii) the cross‐sectional area of the channels in the reinforcement is sufficiently uniform. The theory reveals that the bubbles are more likely to be trapped on a small scale, i.e. within fiber bundles rather than on a large scale, i.e. between the bundles. It is also concluded that, if the bubbles are trapped at the resin flow front, a converging flow is better for the transport of the voids than a diverging flow.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.