Abstract

A novel 3-electrode cell type is introduced to run parametrical studies of H2 evolution in an alkaline electrolyte on porous electrodes. Electrochemical methods combined with a high-speed optical measurement system are applied simultaneously to characterize the electrodes and the bubble dynamics in terms of bubble size distribution and coverage of the working electrode. Three different cathodes made of expanded nickel are investigated at applied current densities of |j| = 10–200 mA cm−2 without forced flow and at a flow rate of 5 ml min−1. The applied current density is found to significantly influence both the size of detached bubbles and the surface coverage of the working electrode. The forced flow through the cathodes is found to strongly reduce the bubble size up to current densities of about 100 mA cm−2, whereas the initial transient until the cathode surface is completely covered by bubbles is only marginally affected by the flow-through.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.