Abstract

AbstractGas–liquid mass transfer in pulp fibre suspensions in a batch‐operated bubble column is explained by observations of bubble size and shape made in a 2D column. Two pulp fibre suspensions (hardwood and softwood kraft) were studied over a range of suspension mass concentrations and gas flow rates. For a given gas flow rate, bubble size was found to increase as suspension concentration increased, moving from smaller spherical/elliptical bubbles to larger spherical‐capped/dimpled‐elliptical bubbles. At relatively low mass concentrations (Cm = 2–3% for the softwood and Cm ≅ 7% for the hardwood pulp) distinct bubbles were no longer observed in the suspension. Instead, a network of channels formed through which gas flowed. In the bubble column, the volumetric gas–liquid mass transfer rate, kLa, decreased with increasing suspension concentration. From the 2D studies, this occurred as bubble size and rise velocity increased, which would decrease overall bubble surface area and gas holdup in the column. A minimum in kLa occurred between Cm = 2% and 4% which depended on pulp type and was reached near the mass concentration where the flow channels first formed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.