Abstract

The rise of a single bubble confined between two vertical plates is investigated over a wide range of Reynolds numbers. In particular, we focus on the evolution of the bubble speed, aspect ratio and drag coefficient during the transition from the viscous to the inertial regime. For sufficiently large bubbles, a simple model based on power balance captures the transition for the bubble velocity and matches all the experimental data despite strong time variations of bubble aspect ratio at large Reynolds numbers. Surprisingly, bubbles in the viscous regime systematically exhibit an ellipse elongated along its direction of motion while bubbles in the inertia-dominated regime are always flattened perpendicularly to it.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call